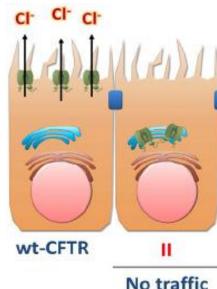
Inflammatory Cell Death Mechanisms Against *Pseudomonas aerugonisa* in Cystic Fibrosis

Presented by: David Cai

March 31, 2017

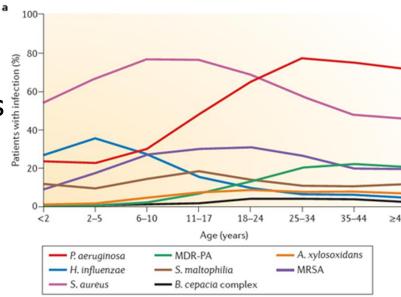
Biochemistry, Microbiology and Immunology, Faculty of Medicine


med.uOttawa.ca

Cystic Fibrosis

1 in 3600 children born in Canada are affected

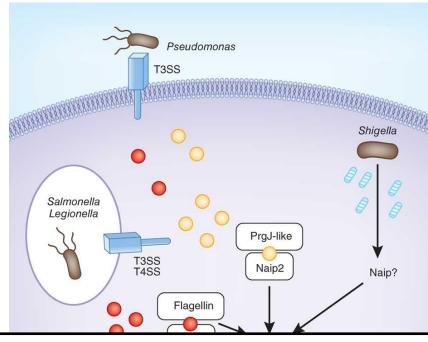
- Caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene
- Establishment of chronic bacterial infections
- Periods of stable disease and acute exacerbations



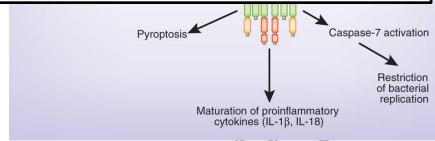
R1066C A561E F508del

Pseudomonas aeruginosa

- Opportunistic pathogen
 - Acute and chronic infections
- Most common bacterial pathogen in CF



- Type III secretion system (T3SS)
 - Facilitates detection and infection of target cells
- Undergoes genetic and phenotypic adaptation



Inflammatory cell death

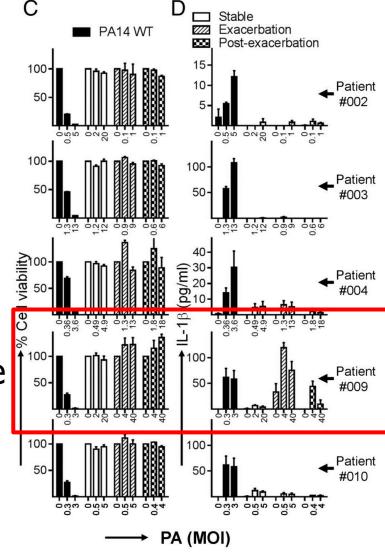
- Inflammasome
 - Recruits and activates pro-caspase-1
 - Release of mature IL-1β and IL-18
 - Induction of pyroptosis

Inflammatory cell death \rightarrow amplification of inflammation

🔳 u Ottawa

med.uOttawa.ca

Hypothesis


 During stable disease, P. aeruginosa fails to induce inflammasome signaling, however, during exacerbation periods, inflammasome signaling is reactivated.

Preliminary Results

Stable isolates do not induce inflammasome activation

 Isolates from severe exacerbation events induce IL-1β production, but do not induce cell death

Acknowledgements

Dr. Subash Sad

Dr. Thien-Fah Mah

Dr. Shawn Aaron

Kwangsin Kim

Ardeshir Ariana

Andrew Wight

Dikchha Rijal

Emmanuelle Ametepe

Dr. Julie Joseph

Kelsey Huus

Norah Alturki

Stephanie Hajjar

