Bring out your dead: Cell Death and its Consequences in Inflammatory Vascular Disease

-Katey Rayner

Assistant Professor, Faculty of Medicine uOttawa

The vulnerable plaque

Heart J 2009;30:2838-2844

Not all plaques are created equal

Not all plaques are created equal

Inflammation and the necrotic core

Libby, Tabas, Fredman, Fisher. Circ Res. 2014

Cell death in atherosclerosis

Tracie Seimon, and Ira Tabas J. Lipid Res. 2009;50:S382-S387

Cell death in atherosclerosis

Nature Reviews | Immunology

Tabas, Nat Reviews Immunology, 2010

Cell death...How to die?

Necroptosis = programmed cell necrosis

Necroptosis vs apoptosis: a balance

Vandenabeele (2010) Nature Reviews Molecular Cell Biology

HYPOTHESIS:

Necroptotic cell death in the plaque releases inflammatory mediators and underlies necrotic core formation

Model of in vitro necroptosis

Macrophages in culture

- - + **Nec-1** (inhibitor of NECROPTOSIS)
 - + **zvad** (inhibitor of apoptosis, → NECROPTOSIS)

RIP3-/- BMDMs do not undergo oxLDLinduced necroptosis

Phosphorylation of RIP3 – key determinant in driving macrophage necroptosis

Karunakaran, Science Adv, 2016

Activation of gene expression by oxLDL

Necroptotic cells are not efficiently efferocytosed

Summary: In vitro findings

- Atherogenic ligands oxLDL + DAMPs activate necroptosis in the absence of chemical inhibitors of apoptosis
- Via upregulation of RIP3 and MLKL
- Reduced efferocytosis of necroptotic cells

RIP3^{-/-} mice have decreased atherosclerosis

When RIP3 is knockedout, atherosclerosis is reduced.

Lin et al (2013) Cell Reports, 3(1): 200-210

Can we use necroptosis as a target for therapeutic intervention?

Atherosclerosis Intervention Model with Nec-1s

Inhibiting necroptosis reduces lesion size & necrotic core

Karunakaran, Science Adv, 2016

Inhibition of necroptosis reduces pMLKL

G Phosphorylated MLKL

Placebo Nec-1s

Is necroptosis relevant to human disease?

Identifying active necroptosis: challenges

- •Expression ≠ activation
- Traditional measures of cell death do not distinguish between apoptosis and necroptosis
- Lacking markers specific for necroptosis

Necroptosis is active in unstable CAD

Necroptosis is active in unstable CAD

What's next?

- Can necroptosis be used as a diagnostic for unstable coronary disease?
- > What are other drivers of necroptosis in the vessel wall?
- How is necroptosis activated in other inflammatory conditions?
- How can this be pharmacologically and diagnostically targeted?

Molecular imaging of atherosclerosis

Can necroptosis serve as an imaging biomarker?

🐼 nordion

Chemistry images Lihui Wei

Visualization Atherosclerosis using radiolabeled Nec-1 in ApoE^{-/-} mice

Aortic En face

Oil-Red-O

Α

Overlay

What are other drives of necroptosis in the plaque?

Laffont, *unpublished* (with M. Koschinsky)

What about upstream of RIP3/MLKL?

RIPK1: A regulator of inflammation, cell survival and necroptosis

Blocking RIPK1 prevents atherosclerosis

concentration (pg/mL)

160-

100-

60

control ASO

IL-17A

Karunakaran et al, unpublished

Blocking RIPK1 reduces inflammation in BMDMs

Necroptosis underlies plaque vulernability

The future?

Heart J 2009;30:2838-2844

Bring out yer dead!!

I'm not dead yet! I feel fine!

ACKNOWLEDMENTS

Rayner LaboratoryDenuja KarunakaranMichèle GeoffrionMy Anh NguyenBenoit LaffontZach ListerLeah SusserLaura Richards

Subash Sad Bojan Shutinoski

CVPath *Renu Virmani* Frank Kolodgie

Cardiovascular Molecular Imaging Centre for Excellence Terry Ruddy Lihui Wei

Marlys Koschinsky

Prakriti Shangari Rachelle Beanland Ella deKemp Ryan Gotfrit Danyk Barrette

> Karolinska Institute, Sweden Biobank of Karolinska Endarterectomy (BiKE)

Ionis Pharmaceuticals GlaxoSmithKline

Funding sources:

<u>D</u>anger <u>A</u>ssociated <u>M</u>olecular <u>P</u>atterns (DAMPs)

Limited DAMP release Weak inducer of inflammation

D

Massive DAMP release Strong inducer of inflammation

DAMPs exacerbate oxLDL-induced death

D

DAMPs exacerbate oxLDL-induced death

Does necroptosis contribute to accelerated atherosclerosis in diabetes?

oxLDL induces MLKL trimer formation

Can the necroptotic pathway serve as a biomarker for CAD?

Is necroptosis involved in human atherosclerosis?

Biobank of Karolinska Endarterectomy (BiKE)

Ljubica Perisic, Lars Maegdefessel, Ulf Hedin, Göran K Hansson,

	stable	unstable	
GENERAL	asymptomatic	symptomatic	P value
number of patients	40	87	
age (years, mean)	66.4	72.52	0.0002*
gender (male/female)	39/1	61/26	0.0003*
BMI (mean)	27.5	24.67	ns
	Not applicable		Not
SYMPTOM			applicable
minor stroke (MS)		32 (36.78%)	
transitory ischemic attack (TIA)		29 (33.33%)	
amaurosis fugax (AF)		26 (29.89%)	

Table I: Demographics of the microarray patient cohort (*p<0.05)

+control arteries (disease-free) n=10

oxLDL-induction of necroptosis is independent of the inflammasome

M1 macrophages have higher necroptotic gene expression

Karunakaran et al, under revision.

METHODS

Macrophages in culture

- - + **Nec-1** (inhibitor of NECROPTOSIS)
 - + **zvad** (inhibitor of apoptosis, ... NECROPTOSIS)

Other Ligands that induce Macrophage Necroptosis: DAMPS

DAMPS = Damage Associated Molecular Patterns

Adapted from Lauber et al (2012) Frontiers in Oncology, 2(116): 1-14.

Generated DAMPS from necroptotic cells:

- 1. Mechanical: Freeze thaw cycle
- Chemical Induction: LPS+zVAD (biologically validated)

What are other drives of necroptosis in the plaque?

Karunakaran, unpublished

What are other drives of necroptosis in the plaque?

Laffont, *unpublished* (with M. Koschinsky)

INVOLVEMENT OF OTHER GENES

GENES	ROLE IN NECROPTOSIS
Mixed lineage kinase domain- like (MLKL)	Phosphorylation by RIP3 critical for necroptosis.
Cylindromatosis (CYLD)	Facilitates RIP1 deubiquitnation at the TNF receptor1 (TNFR-1) complex
Cyclophillin D	Controls mitochondrial permeability

Macrophages in atherosclerosis

Moore, Sheedy & Fisher, Nat Rev Imm, 2013

Necroptosis = programmed cell necrosis

Vandenabeele (2010) Nature Reviews Molecular Cell Biology

Necroptosis = programmed cell necrosis

Timeline | Evolution of the concept of programmed necrosis

ANT, adenine nucleotide translocase; CYLD, cylindromatosis; RIP, receptor-interacting protein (also known as RIPK); ROS, reactive oxygen species; TNF, tumour necrosis factor; TNFR1, TNF receptor 1.

Adapted from Vandenabeele (2010) Nature Reviews Molecular Cell Biology, 11:700

Summary so far

- Macrophages undergo necroptosis:
 - Treatment with "inflammatory" ligand(s)
 - increases cell death, which can be inhibited by Nec-I
 - increases RIP3 phosphorylation
 - increases expression of necroptotic genes (e.g. RIP3, MLKL)
 - amplified necroptotic cell death in the presence of DAMPs
- Necroptosis relevant in atherosclerosis
 - INTERVENTION mouse model
 - Associated with plaque vulnerability in patients with carotid atherosclerosis

How do atherogenic ligands drive necroptosis?

D

Promoter luciferase activity control 4.5 oxLDL 4 3.5 3 2.5 2 1.5 1 0.5 0 MLKL RIP3

Promoter Activity

oxLDL induces RIP3 and MLKL via Reactive Oxygen Species

Þ

Visualization Atherosclerosis using radiolabeled Nec-1 in ApoE^{-/-} mice

