Laboratoire de génie tissulaire cardiovasculaire

Le Laboratoire de génie tissulaire cardiovasculaire, dirigé par Erik Suuronen, Ph.D., se voue à la mise au point de procédés thérapeutiques axés sur le génie tissulaire et cellulaire en vue de traiter les lésions et les maladies du cœur.

La coronaropathie, même diagnostiquée, est encore de nos jours souvent mortelle malgré tous les progrès réalisés au niveau des traitements, car ces derniers restent imparfaits à long terme : ils ne guérissent pas la maladie et, avec le temps, ils peuvent s’avérer inefficaces.

Depuis quelques années, la thérapie cellulaire se dessine comme une option prometteuse pour le traitement des maladies cardiovasculaires. Elle laisse par exemple entrevoir avec beaucoup d’optimisme qu’elle sera un jour la meilleure façon de soigner les patients dont les artères sont bloquées près du cœur. Ceci étant dit, la science à la base de cette thérapie est plutôt complexe. Avant de pouvoir mettre en application les résultats de la recherche dans ce domaine, il faudra sans doute trouver moyen d’améliorer la fonction des cellules thérapeutiques et la réponse du patient à leur endroit. Or, le génie tissulaire pourrait offrir des moyens de faciliter le processus de réparation. Le génie tissulaire est essentiellement une combinaison de différentes méthodes liées aux cellules, au génie et aux matériaux qui vise à créer des tissus de remplacement (temporaires ou permanents) pour les parties endommagées ou pathologiques de l’organisme.

Le laboratoire cherche aussi à comprendre et à renforcer la réaction des cellules souches présentes dans l’organisme lorsque le cœur est endommagé. L’utilisation de biomatériaux conçus pour mobiliser et recruter les cellules souches fait partie des stratégies de renforcement de la réaction des cellules de réparation. D’autres travaux en cours portent sur la possibilité de favoriser l’angiogenèse du cœur en y greffant des tissus synthétiques, appelés « squelettes de biomatériaux », de même que des cellules souches ou progénitrices, de sorte à rétablir l’irrigation sanguine du tissu endommagé et l’amélioration de sa fonction. De plus, le laboratoire travaille à la mise au point de traitements du diabète et des complications cardiovasculaires associées. Il y a lieu d’espérer que les fruits de ces recherches rendront les traitements axés sur le génie cellulaire et tissulaire nettement plus efficaces pour les patients atteints d’une maladie du cœur.

Le Laboratoire de génie tissulaire cardiovasculaire est affilié au Programme de recherche sur les biomatériaux et la régénération de la Division de chirurgie cardiaque. Il offre des possibilités de formation aux étudiants qui effectuent des recherches pour l’obtention d’un diplôme de l’Université d’Ottawa, quel qu’en soit le niveau. Son financement provient des Instituts de recherche en santé du Canada (IRSC), de la Fondation des maladies du cœur et de l’AVC, du Conseil de recherches en sciences naturelles et en génie (CRSNG), de la FRDJ (Fondation de la recherche sur le diabète juvénile), de même que du ministère de la Recherche et de l’Innovation de l’Ontario.

Directeur

Sur cette page

Publications

See current publications list at PubMed.

Selected publications:

  1. A. Ahmadi, S. Thorn, M. E. I. Alarcon, Kordos, D. T. Padavan, T. Hadizad, G. O. Cron, R. S. Beanlands, J. N. DaSilva, M. Ruel, R. A. deKemp and E. J. Suuronen. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials 2015;49:18-26.
  2. N. J. R. Blackburn, T. Sofrenovic, D. Kuraitis, A. Ahmadi, B. McNeill, C. Deng, K. J. Rayner, Z. Zhong, M. Ruel and E. J. Suuronen. Timing underpins the benefits associated with injectable hydrogel therapies for the treatment of myocardial infarction. Biomaterials 2015;39:182-92.
  3. B. McNeill, B. Vulesevic, A. Ostojic, M. Ruel and E. J. Suuronen. Collagen matrix-induced integrin αVβ3 expression in circulating angiogenic cells targeted by matricellular protein CCN1 to enhance their function. FASEB J 2014; Dec 2 [e-pub ahead of print].
  4. C. G. Palii, B. Vulesevic, S. Fraineau, E. Pranckeviciene, A. J. Griffith, A. Chu, H. Faralli, Y. Li, B. McNeill, J. Sun, T. J. Perkins, F. J. Dilworth, C. Perez-Iratxeta, E. J. Suuronen, D. Allan and M. Brand. Trichostatin A enhances the vascular repair function of injected human endothelial progenitors by increasing the expression of TAL1-dependent genes. Cell Stem Cell 2014;14:644-57.
  5. A. Ahmadi, B. McNeill, B. Vulesevic, M. Kordos, L. Mesana, S. Thorn, J. M. Renaud, E. Manthorp, D. Kuraitis, H. Toeg, T. G. Mesana, D. R. Davis, R. S. Beanlands, J. N. DaSilva, R. A. deKemp, M. Ruel and E. J. Suuronen. The role of integrin α2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials 2014;35:4749-58.
  6. B. Vulesevic, B. McNeill, M. Geoffrion, D. Kuraitis, J. E. McBane, M. Lochhead, B. C. Vanderhyden, G. S. Korbutt, R. W. Milne and E. J. Suuronen. Glyoxalase-1 over-expression in the bone marrow reverses defective neovascularization in streptozotocin-induced diabetic mice. Cardiovasc Res 2014;101:306-16.

Personnel

Current Team Members

Graduate and Post-doctoral fellows:

Undergraduate students

Technicians:

Past Team Members

  • Dr. Ali Ahmadi (Doctoral student)
  • Anna Badner (Honour's student)
  • Helene Chiarella-Redfern (Master’s student)
  • Dr. Chao Deng (Post-doctoral Fellow)
  • Christine Eisner (Honour's student)
  • Ben Engel (Co-op student)
  • Carine Ghem (Visiting PhD student)
  • Khrystyna Herasym (Honour's student)
  • Chenchen Hou (Master's student)
  • Drew Kuraitis (Doctoral student)
  • Zachary Lister (Masters student)
  • Marina Lochhead (Co-op student)
  • Rafaela Machado (International summer student)
  • Emily Manthorp (Medical student)
  • Jenelle Marier (Master's student)
  • Dr. Eva Mathieu (Post-doctoral Fellow)
  • Dr. Joanne McBane (Post-doctoral Fellow)
  • Kimberly McEwan (Master’s student)
  • Angela Melhuish (Summer student)
  • Laura Mesana (Summer student)
  • Bora Nadlacki (Masters student)
  • Kyra Nicholson (Summer student)
  • Nadya Nossova (Honour's student)
  • Aleksandra Ostojic (Master’s student)
  • Dr. Donna Padavan (Post-doctoral Fellow)
  • James Podrebarac (Masters student)
  • Jennifer Poelstra (Co-op student)
  • Zorica Prostran (Honour's student)
  • Eleni Ramphos (Summer student)
  • Julia Ranieri (Master’s student)
  • Tanja Sofrenovic (Master's student)
  • Zahra Sharif (Medical summer student)
  • Hadi Toeg (Medical summer student)
  • Lida Tohidi (Honour's student)
  • Dr. Branka Vulesevic (Doctoral student)
  • Jeffrey Yates (Honour's student)
  • Dr. Pingchuan Zhang (Post-doctoral Fellow)
  • Chris Zuliani (Summer student)

Projets

Current ongoing projects in the laboratory:

  1. Biomaterial and Cell-based Cardiac Therapies
  2. Mechanisms of Cell-Matrix Interaction
  3. Biomaterials for Progenitor Cell Recruitment
  4. Regenerative Approaches for the Treatment of Diabetes and Associated Cardiovascular Complications
  5. Molecular Function and Imaging Program

Biomaterial and Cell-based Cardiac Therapy

The clinical feasibility and safety of cell therapy for treating myocardial infarction has been demonstrated. Despite this, the observed functional improvement with cell therapy has been modest. The lack of a more significant benefit can be attributed, in part, to the low survival, engraftment and function of transplanted cells. In addition, the reparative cells from diseased patients often have reduced function. Therefore strategies are needed to improve transplanted cell retention and therapeutic potency. A possible solution to overcome these hurdles is to use of tissue engineered biomaterials. This involves the provision of a biomaterial scaffold to promote transplanted cell engraftment and to guide the regenerative processes.

In one project, Dr. Suuronen and Marc Ruel, MD, are leading a team investigating new ways to grow and deliver a special type of cell into the heart. The cells of interest, termed endothelial progenitor cells, have the potential to create new arteries and can be obtained from a blood sample. New culture techniques are being used to grow and expand the number of these cells and ways of re-delivering them into the damaged heart are being developed. For this, various tissue engineered matrix materials are being tested. This research also aims to examine how the matrix may be used to enhance the survival, engraftment and function of transplanted cells.

In addition to enhancing transplanted cell effects, the matrix is being evaluated for its ability to address the fact that tissues of patients requiring treatment are more aged and diseased, which negatively affects the heart’s ability to respond to therapy. We are investigating the use of tissue engineered materials to improve the condition of the host tissue by reducing inflammation, cell death, and remodelling of the heart. In collaboration with Katey Rayner, PhD, the lab is examining microRNA signalling that may be critical in directing the protective effects of matrix therapy. This information will provide future targets for augmenting the therapeutic potential of the matrix. It is our goal for such novel tissue engineering strategies to eventually make humans more responsive to regenerative therapies.

Mechanisms of Cell-matrix Interaction

Understanding how cells respond to their extracellular matrix (ECM) environment could enable us to manipulate and enhance cell functions and better guide tissue regeneration in diseased tissue. Integrins are cell surface proteins that are the main link for communication between the extracellular environment and the inside of the cell. The interaction of integrins with extracellular proteins activates a variety of signalling pathways that regulate a range of cellular functions including proliferation, differentiation, migration, survival, and adhesion. We are interested in learning how different proteins in the cell’s environment stimulate different cell functions in healthy and diseased tissues. With this information, we can design strategies to restore important signalling that may be altered in disease by manipulating the cells and/or their environment. This knowledge will also serve to develop ECM-like biomaterials that can be administered to damaged hearts to provide an environment that is more supportive of regeneration.

Biomaterials for Progenitor Cell Recruitment

In this research, we are developing new strategies to attract regenerative cells from the circulation into the heart. The cells of interest are stem and progenitor cells that are released from the bone marrow into the blood, and have the potential to create new arteries. Biomaterials are being designed to release factors that will increase mobilization of these cells and attract them to the heart. These matrix materials, referred to as “enhanced matrices”, also contain specific sites onto which the recruited cells attach. Such materials are expected to stimulate the recruited cells and repair processes to regenerate new arteries. This will restore the blood supply to the damaged areas of the heart.

A story on the state of regenerative medicine for growing a new heart, including details on this research can be read in a Maclean’s article published in February 2009.

Regenerative Approaches for the Treatment of Diabetes and its Associated Cardiovascular Complications

Diabetes constitutes a major health problem and the global prevalence of the disease is expected to rise in coming years. Approximately 80% of diabetic mortality is a result of heart disease or stroke. Diabetics can suffer from circulation problems, which may include peripheral artery disease, and reduced blood flow to the heart ultimately leading to heart failure. The body’s natural response is to attempt to resupply the tissue by growing new blood vessels; however this mechanism is defective in diabetics. Therefore, we aim to identify possible links between the diabetic condition and the loss of vasculature. Toxic products produced in the body contribute to the harmful effects of diabetes, particularly vascular abnormalities. We are examining whether a reduced amount of these toxic products will help reverse the defective blood vessel growth found in diabetes. In particular, we are examining the effect of the toxic products on the function of progenitor cells, which act in the blood vessel regeneration process. We are also examining the effects of these toxic products on the development of diabetic cardiomyopathy, a disorder of the heart muscle.

Molecular Function and Imaging (MFI) Program

This is a program under the direction of Rob Beanlands, MD. Principal investigators collaborating in this Program are Drs. Erik Suuronen, Marc Ruel (cardiac surgery), Rob deKemp (imaging physics), and Mary-Ellen Harper (bioenergetics). The Program has grown from about 15 trainees in 2006 to over 50 graduate students, post-doctoral fellows and medical residents and fellows in 2013. The central theme of this group is the investigation of metabolic and cellular function alterations in the pathophysiology of cardiovascular diseases that contribute to myocardial dysfunction and heart failure and their response to therapeutic interventions. Although various evaluation methods are utilized within this group, the central link rests in the unique molecular imaging capabilities of positron emission tomography (PET). The Program is also focused on its transdisciplinary training environment, which is in place for our students who are being nurtured for future leadership positions. Among other initiatives, trainees in our group are being co-supervised, engaging in cross-disciplinary collaborative research, with structured courses and student-based scientific retreats.

Offres d'emploi